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Statistical Inference for
LAD Regression

with Autocorrelated
Errors

Moawad El-Fallah Abd El-
Sallam’

Abstract: .

' The method of least absolute
deviation (LAD) provides a robust
alternative to least - squares,
particularly when the disturbances

follow -distributions that are non-

normal and subject to outliers.
While inference in least squares
estimation -is well understood,
inferential procedures in the
context of least absolute deviation
estimation have not been studied
as extensively particularly in the
presence of auto correlation. In this
paper- we study two alternative
significance test, procedures in
least absolute deviation regression,
along with two approaches used to
correct for senal correlation. The
study is based on a Monte Carlo
_simulation, and comparisons are
made. based on  observed
significance levels. -
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1. Introduction:

In regression analysis, the
Ordinary Least Squares (OLS)
method yields parameter estimates
that are unbiased and have
minimum variance when the
disturbances are independent and
identically normally distributed.
However, in the presence of non-
normal e rrors, the performance of
OLS can be not optimum,
especially if the errors follow a
distribution that tends to produce
outliers. Thus' much research has
been aimed at developing
estimation approaches that are
robust to such outller-producmg
error distributions. Least absolute
deviation (LAD) method  has
emerged as one of the most
commonly employed techniques
for ‘robust regression. LAD
estimates are affected less strongly
by extreme. observatlons, relative
to OLS estimates. However, less is
understood about’ the behav1or of
LAD estimates, partlcuIarly for
small samples, and the process of
inference is less stralghtforward
So, .nference in LAD estimation is
anactiveareaof research In this

_respect, Koenker and Bassett
(1982) suggested the Wald,
Likelihood , ratio (LR), and

Lagrange multlpher (LM) tests
when- usihng LAD estimation.
These approaches can be used to



test for ¢ oefficient significance in
the regression model. Dielman and
Pfaffenberger (1990)  studied
inference for regression using
LAD estimation when disturbances
are independent but not necessarily
normal.

On the other hand, although
LAD estimation has been
suggested as an alternative to Least
Squares regression, it is much less
used, and thus can be viewed as a
non-traditional  technique. In
addition, autocorrelation correction
procedures in LAD regression
have seen little use in practice.
These procedures have not been
fully studied and the inference
techniques appropriate for LAD
regressions after correcting for
autocorrelation have only recently
been developed. Thus, the use of
these autocorrelation corrections
can be viewed as nontraditional. In
this paper we present results of a
simulation  study  addressing
questions of inference for
regression using LAD estimation
in  the presence of
correlation. The performances of

various tests and corrections for.

autocorrelation are  compared,
based on observed significance

levels. We concentrate on model

performance in small samples, due
to the practical importance of
smaller sample sizes, particularly
for apphcatlon in business and
economics. The empha51s of this
study is on the performance of
hypothesis tests about the

serial
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regression Coefficients in contrast
with the earlier papers that dealt
with estimation.

The paper is organized as
follows. The linear regression
model with autocorrelation and the
LAD estimation along with the
existing t wo c orrections for s erial
correlation are introduced in
section (2). Issues of inference are
discussed in section (3), including
descriptions of the test procedures
and a review of the applicable
Titerature. T he simulation study i s
described in section (4), and the
results are discussed in section (5).
Section (6) concludes with some
suggestions of areas for future
research.

2.The Model and Correctlon
for Serial Correlation:

Consnderi the following simple
regression model:

¥i=Bo+ Bixi +u,

U; = pu;. + g, i=‘l, n (1)

‘where, y;and x;are the i

observations on the dependent and
explanatory variables, respectively,
and u; is a random error for the i ™
observation and may be subject to
autocorrelation. The ¢ represent
disturbance components that are
assumed to be independent and
identically distributed, but not
necessarily normal. The
parameters Bo and B; are unknown
and "must be estimatéd. The

.......

th

_parameter p is the autocorrelation
‘coefficient, with |p| <I. '



The LAD criterion chooses
the estimates of By and [, that
minimize the sum of the absolute
residuals. The use of this criterion,
rather than the minimization of the
sum of the squared residuals used
in OLS estimation, provides
robustness against outliers, and is
particularly useful when g are

generated by a  fat-tailed
distribution. LAD estimation can
be formulated as a linear
programming problem  ior
iteratively reweighted least squares
algorithm, see  Morgenthaler
(1992). :

Using matrix notation, the model
can be written as:

Y=XB+U,
where:

S
N

[' an P
The prdblem of serial
correlation has been investigated
extensively in the context of OLS,
and numerous approaches have
been proposed for correction; see
for example Cochrane and Orcutt
(1949), Banerjee et al., (1993),
Gujarati (1995) and Ramanathan
(2002).

Two procedures, both two-
stage and based cn a generalized
Least Squares approach, are
commonly employed to correct for
autocorrelation in the Least
Squares regression context. These
are the Prais-Winsten (PW) and

2

Un
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Cochrane Orcutt (CO) procedures.
Both procedures transform the data
using the autocorrelation
coefficient, p, after which the
transformed data are used in
estimation. The procedures differ
in their treatments of the first
observation, (y, , xj). The PW
transformation matrix is:

1-p2 0o 00
M, =[P L 0 0| (4
0 0..... p 1

Pre-multiplying equation (2)
by M, yields: '

M|Y=M1XB_+M1U, (5)
or _
Y =X'B+e, (6)

where Y’ contains the transformed
dependent variable values and X’
is the matrix of transformed
independent variable values, so

and ;
r - ]
\/l—p2 \/l—p2 X4
X*=|17P X=X | (g
_l—p Xp —pxn__l_

In equation (6), ¢ is the vector of
serially uncorrelated g; errors. The
PW approach may be effective in
the LAD context as well as in
OLS. :

The Co transformation matrix is
the (n-1) x 1 matrix obtained by



removing the first row of the M,
transformation matrix. Coursey
and Nyquist (1983) investigated

the performance of the CO
correction--with LAD - estimation
for  disturbances from the

symmetric stable family. -

The use of CO transformation
means that (n-1) observations,
rather than n, are used to estimate
the  model. In the CO
transformation, the first
observation is omitted, whereas, it
is transformed and included in the
estimation  with  the PW
transformation.  Asymptotically,
the loss of this single observation
is probably of minimal concern.
However, for small samples
omitting the first observation has
been shown to result in a least
squares estimator inferior to that
obtained when the first observation
is retained and transformed. In all
cases, the use of either correction
approach  requires that the
correlation coefficient, p, be
estinfated from sample data. In this
case, we estimate p by applying
LAD estimation to the following
equation:

A N

u. =pu. + €.
1 P -

1 1 ®

A

u.
1

residuals from the LAD fit to
equation (1). It will be shown in
section (4) that, the PW correction
approach is ‘more effective
following pre-testing ~ for

where the are the
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autocorrelation, in the context of
LAD regression.

- LAD

3. Testing for
Regression: ’

An important form of
inference in regression is the
significance testing for
coefficients. This remains an
underdeveloped area in LAD

regression. Koenker and Bassett
(1982) developed the Wald and
likeLihood ratio (LR) test statistics
for use in significance testing in
LAD regression, and they showed
that the two test statistics have
identical asymptotic chi- square
distributions, with the degrees of
freedom equal to the number of
coefficients included in the test,

(e.g.,1, for testing Ho:
Bo=0). In this paper, the Wald and
LR testing approaches are
considered.

The Wald test statistics in

the general regression case is given

A A A

by BB AZD, where Bis the
vecior of LAD estimates for the
coefficients included in the test; D
is the appropriate block of the

(X' X)" matrix to be used in the

test, and A represents a scale
parameter, such that
A =1/ (2 f (m)), where f (m) is the
p.d.f of the disturbance distribution
evaluated at the median.

The LR test statistic is 2
(SARg — SARy) / X, where SARy

-is the sum of the absolute residuals



in the restricted model, and SAR_
is the sum of the absolute residuals
in the unrestricted, or full model.
The scale parameter, A, is identical
to that in the Wald-test statistic.

Both the Wald and the LR
test statistics require the estimation
of the scale parameter A. The
estimator of A used in this paper is
based on that suggested by
Mckean and Schrader (1984)
asih=nle, . — €l [2Z0n].
where k= (n+1)/ 2 - Z, 2 (n / 8)'?,
and the e (, are ordered residuals
from the LAD fitted model.
Mckean and Schrader determined-
using Monte Carlo simulation-that
the: estimator of A offers the best
performance
when a = 0.05

For additional studies of
inference in  LAD regression,
Dielman  and Pfaffennberger
(1990) examined the small sample
performance of the Wald and LR
tests for simple LAD regression
using independent disturbances,
and considered two different
bootstrap approaches to hypothesis

testing = for LAD regression
coefficients. However, the
bootstrap procedure performed

well, but is quite computationally
intensive, and was applied in cases
when the disturbances were
independent.

4. Monte Carlo Simulation:

In this section, we are
interested in  studying the
performances of the two

“standard” procedures for testing
the null hypothesis that the slope
coefficient, B, , is equal to zero.
The model is that shown as
equation (1), and we consider the
Wald and LR tests along with the
PW  and CO approaches to
correcting for serial correlation.

4.1) Design
Experiment.

The experimental design for
the - Monte Carlo simulation
consists of the following factors:

Sample size: we consider a sample
size¢ of n=20 throughout the
experiment many applications of
practical - interest involve data
histories of approximately this
length (e.g. 5 years of quarterly
financial data). The sample size of
20 observations is small enough to
give a reliance on asymptotic
results, so the simulation approach
is useful for studying the small
sample behaviors of the models.

LAD estimation studied by
Dielman and  Pfaffendberger
(1990) indicated that, model
behavior is relatively. stable for
sample sizes over n = 40, Behavior
for n 20 and n =30 were
relatively consistent, while
reducing the sample size much
below 20 yielded notably different
results. Therefore, the use of n =

of the



20 represents an effort to study
small-sample results.

Coefficient values: the intercept,
Bo , is set to O throughout the
experiment. This causes no loss of
generality, based on the results of
Andrews (1986). The slope
coefficient varies, with B, =0, 0.2,
0.4, 0.6, 0.8, 1.00. Results with J3;
= ( are used to study significance
levels, while the full range of B,
values is used to study the power
performances of the tests.

" Autocorrelation: we use p = 0,
0.2, 0.4, 0.6, 0.8, 0.95. This range
permits evaluations of the effect of
several autocorrelations on the
performances of the tests. Only,
we consider . . positive
autocorrelation- in this study,
because it is-encountered more in
practical applications, particularly
in business and economic data.

Disturbance distributions: Four
different distributional forms for
the ¢, disturbances are considered,
to permit an investigation of model
performance in a broad range of
circumstances.

, The distributional forms are;

**Normal, with mean 0 and
variance 1; .e N (0, 1).
**Contaminated normal, where ¢;

are drawn from a N (0, 1)
distribution with probability 0.85
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and from a N (0, 25) distribution
with probability 0.15.

**[ aplace (double exponential),
with mean 0 and variance 2.

**Cauchy, with median 0 and
scale parameter 1.

The contaminated normal (CN),
Laplace and Cauchy are all
“fat-tailed” distributions, which
tend to produce outliers. (It is
interesting to note that LAD is the
maximum likelihood estimator for
egression with Laplace-distributed,
independent errors).

On»c,elf. the g values are genérated,
the u; -values are created as
W= pu;.y + &, where ug =gy / (1-p),
and £, is an initial draw from the
disturbance distribution.

Explanatory variable:

The independent variable x;, is
generated as
“X; = ax;; t v;, witha =0,
0.4, 0.8, and v; ~N (0, 2).
We note that, when a = 0, the
explanatory variable values are
drawn from a normaily distributed
random variable. While, if a
assumes the values of 0.4 or 0.8,
the explanatory variable is an
autoregression with a normal error
term. The patterns of the
explanatory variable generated in
these ways are encountered with
practical time series applications.
Thus, these various patterns are
used to enhance the
generalizability of the results.



Once generated, the explanatory
variable values are held fixed
- throughout the experiment. For
each factor combination in this
design (value of B,, autocorrelation
level, disturbance distribution, and
explanatory variable type), 1500
Monte Carlo trials are used, and
the resulting parameter estimates
are recorded. All random numbers
are generated using IMSL
subroutines, and the explanatory
variable values are generated
independently of the disturbances.

(4.2) The results:

~ Based on the design of the
. simulation study, we can study the
effects of the two corrections for
autocorrelation ‘and the two tests
for ; coefficient significance. The
simulation "results are compared
‘based on the observed significance
levels. In this respect, the
hypothesis tests are performed at
the 5% level of significance.
. Therefore, when H, is true, we
expect to reject it in approximately
5% of the 1500 replications of
each pattern of the experiment.
Tables 1 and 2 show the observed
significance levls for the sets of
4500 replications formed by
. combining the results from the
three types of - explanatory
variables. The results represent the
percentage of trails in which the
~null hypothesis, Hp: By= 0, is
rejected in favor of the two tailed
alternative when Hp is, in fact,

-

true. These percentages are
estimates of a, the probability of a
type 1 error. For all of the
correction / test combinations, the
estimated «, increases with the
degree o f autocorrelation, and the
positive effect of correcting for
severe autocorrelation is clear.
Generally, it is important to correct
for autocorrelation when p > 0.2,

and the importance tends to
increase as the value of »p
increases.

Table (1): Observed significance
levels: Wald test

0.9%

’ - .
Nese | ew <o Nane "™ o
] 0.069 0.071 0.041 &jﬁ’ 0082 | o
02 | oiss | on3 | ooss | o1z | 0133 | ocoss
0.4 0178 0.144 0,064 0163 0.159 0.084-
0.6 0.362 0.163 - 0 [ ¥2:] 0.212 0l
| 0163 | |2
03 [%}, ] 0139 0115 0314 0.243 0.158
.95 0481 0.224 0179 0484 0266 .| 0.199
. Normal Contamianted !g
Neme W | co | Nese w | co |
0 0.087 9.101 0.062 0.071 0.092 4.048
02 0.139 0.143 aon 0131 | 0.433 0.063
04 01584 0.148 0.083 4182 0.142 0079
2152
06 0243 | o6 | o144 | 0243 | 0199 | 0103
[ 1] 0.341 O 249 9.161 0351 0.213 0.149
0.421 0.273 01N 0 ! 0226 0.203

* Bold values represent observed
significance levels that do
not differ from the nominal 5%
with 95 % confidence



Table (2): Observed significance
levels: LR test
t < Lapiscs
| veme | pw | €O | wowe | ew | co
[ o0 | eoss | oons | sess | ooss | oo | oom
o1 | ows § ooss f ooes | ater | o 007
0s | o1 [ ouss | oo | oise | o1 | ores
oe | 02 | oam | aus | sors | ouss | o
os | o351t | o1 | 0163 | 0am | 0195 | 0
o9s | oss | o200 | o2 | o3 | 0283 | 0286
Nerwal < Norwal
P e | ew co w | co
s | oo ]| oree | oo | cos | 0oms | oon
o2 | aus | ons | oom | eoss | o1 | oem
os | 013 | ouse | ouxt [ ores | arsa | oom
ve | e | aiss | o012 | ozsa | oann | oux
os | onr oz | o ons | aiss | orer
oss | oas | orm | o | ounn [ o2 [ o2m

* Bold values represént observed
significance levels that do

not differ from the nominal 5%
with 95 % conﬁden_ce

The results of Tables (1) and
(2) show that, the CO correction
yields observed significance levels
that are closer to the nominal 5%
than those from the PW correction
for the Wald and LR tests. Overall,
the CO / Wald combination seems
to perform better than any other
correction / test combination. In
addition, it is interesting to note
that the uncorrelated Wald test has
very high observed levels of
significance when P = 0. However,
the CO / Wald combination
actually has observed levels  of
significance closer to the nominal
level when p = 0 than does the
uncorrelated Wald test.

Generally, it be noted that,
the rejection rates under the null
hypothesis are quite high for all of
the tests examined. This is may be
due to two possible reasons. First,

-8-

consider the fact that the
asymptotic  chi-square critical
values are used in assessing the
observed significance levels. It
may be that the sample size of 20
is not large enough to justify the
reliance on the asymptotic
distribution. Second, the CO and
PW corrections are based on
estimates of the true
autocorrelation coefficient, p.

5. Conclusion: _

In this paper, using Monte
Carlo s imulation, we compare the
performances of two procedures
for testing the significance of the

slope coefficient in small-sample

LAD simple regression: the W ald
and Likelihood Ratio test statistics.
The Wald and LR tests employ an
estimate of the scale parameter
proposed by Mckean and Schrader
(1984).

‘In addition to the inferential

approaches we consider - two
corrections for serial correlation:
analogues to the Cochrane-Orcutt
(CO) and Prais Winsten (PW)
approaches widely employed in the
Least Squares context. The various
approaches for correction- and
inference are compared based on
observed significance levels. The

‘simulation results indicates that

correction for autocorrelated errors

1s important for larger p, although

“correction clearly does not remove

the full effect of the serial
correlation. The CO approach
generally yields better results than



the PW approach for inference,
although the reverse seems to be
.true for model fit. Thus, based on
the level of significance, the CO /
Wald combination appears to be
preferred.

Finally, the results of this
paper suggest several areas for
future research, which should lead
to a more complete understanding
of inference in least absolute
deviation regression. This study
has considered the case of simple
regression and a single sample
size. Interesting extensions would
include investigation the
sensitivity of the results to sample
size and the extension to multiple
regression.
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